Metal Forming

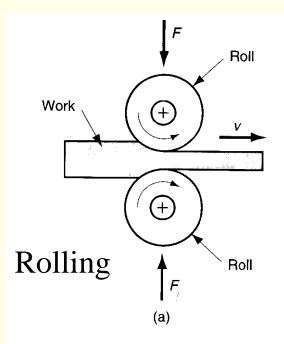
FUNDAMENTALS OF METAL FORMING

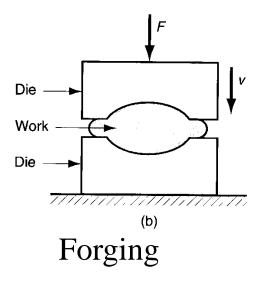
- Overview of Metal Forming
- Material Behavior in Metal Forming
- Temperature in Metal Forming
- Strain Rate Sensitivity
- Friction and Lubrication in Metal Forming

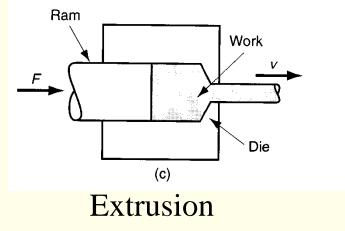
Metal Forming

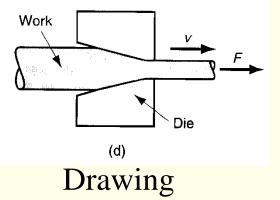
Large group of manufacturing processes in which plastic deformation is used to change the shape of metal workpieces

- The tool, usually called a *die*, applies stresses that exceed yield strength of metal
- The metal takes a shape determined by the geometry of the die

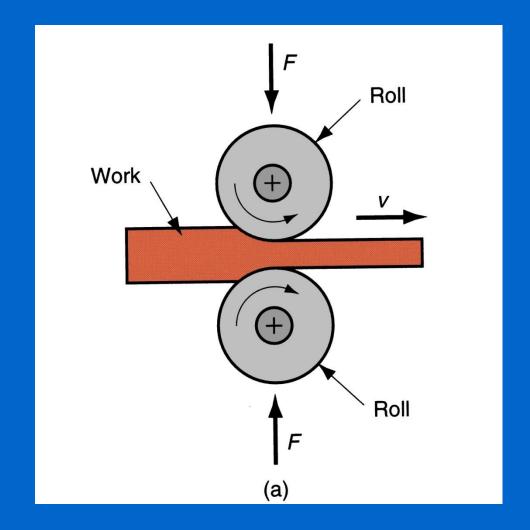

Overview

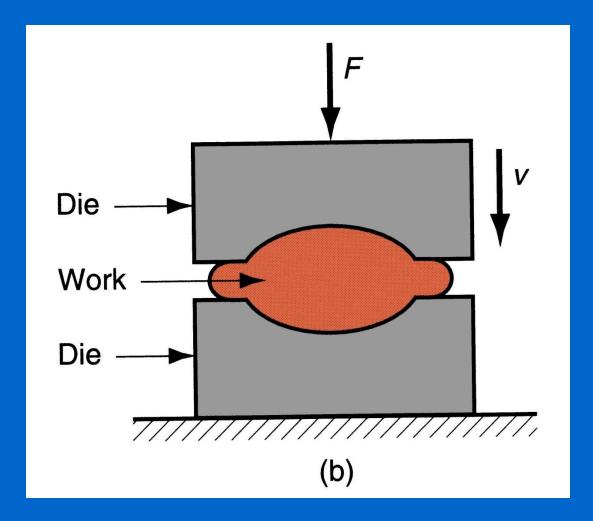

- Process Classification
 - Bulk Deformation Process
 - Sheet Metalworking
- Material Behaviour in Metal Forming
 - Flow Stress
 - Average Flow Stress
- Temperature in Metal Forming
- Effect of Strain Rate
- Friction & Lubrication


Bulk Metal Forming

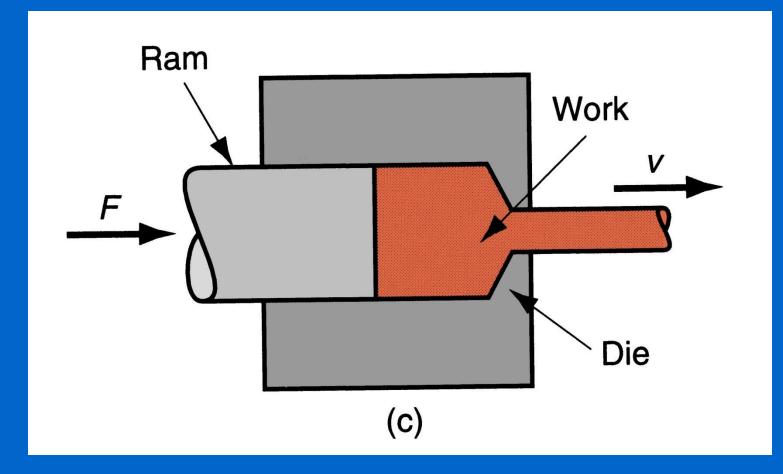

- Rolling compression process to reduce the thickness of a slab by a pair of rolls.
- Forging compression process performing between a set of opposing dies.
- Extrusion compression process sqeezing metal flow a die opening.
- Drawing pulling a wire or bar through a die opening.

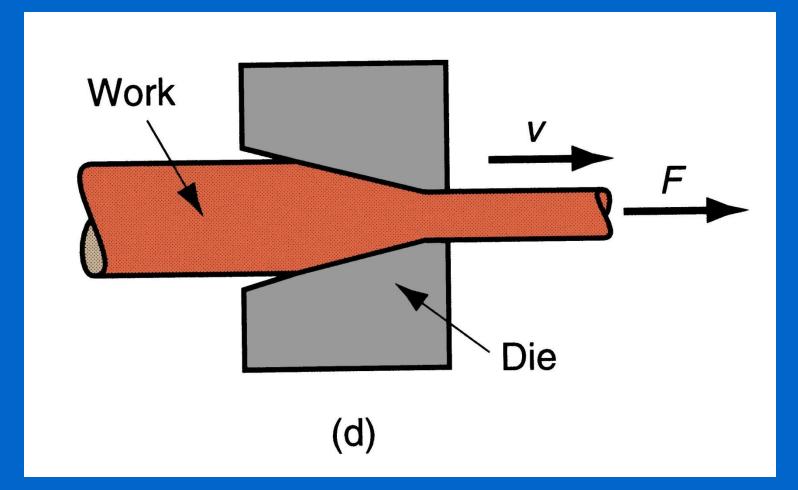
Bulk Metal Forming





Bulk Deformation Processes


- Characterized by significant deformations and massive shape changes
- "Bulk" refers to workparts with relatively low surface area-to-volume ratios
- Starting work shapes include cylindrical billets and rectangular bars


Basic bulk deformation processes: (a) rolling

Basic bulk deformation processes: (b) forging

Basic bulk deformation processes: (c) extrusion

Basic bulk deformation processes: (d) drawing

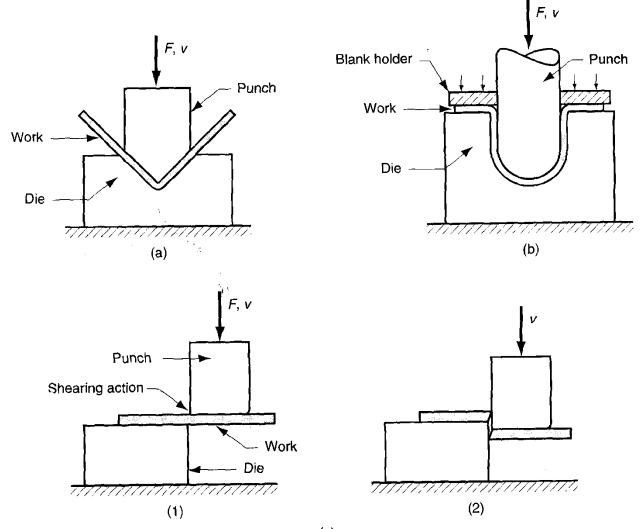
Stresses in Metal Forming

- Stresses to plastically deform the metal are usually compressive
 - Examples: rolling, forging, extrusion
- However, some forming processes
 - Stretch the metal (tensile stresses)
 - Others bend the metal (tensile and compressive)
 - Still others apply shear stresses

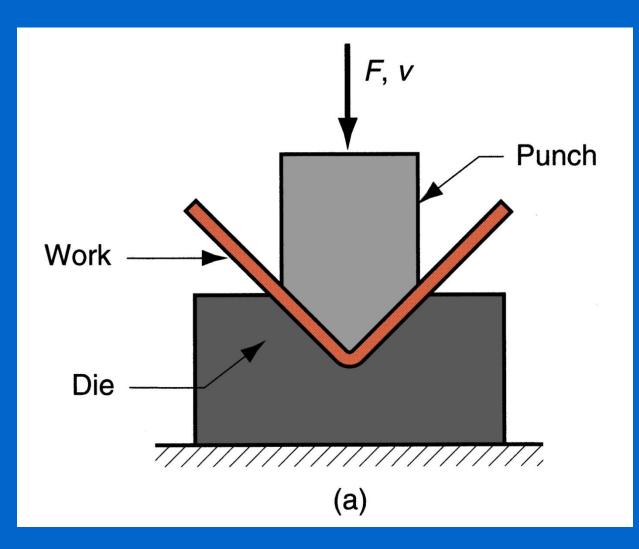
Material Properties in Metal Forming

- Desirable material properties:
 Low yield strength and high ductility
- These properties are affected by temperature:
 - Ductility increases and yield strength decreases when work temperature is raised
- Other factors:
 - Strain rate and friction

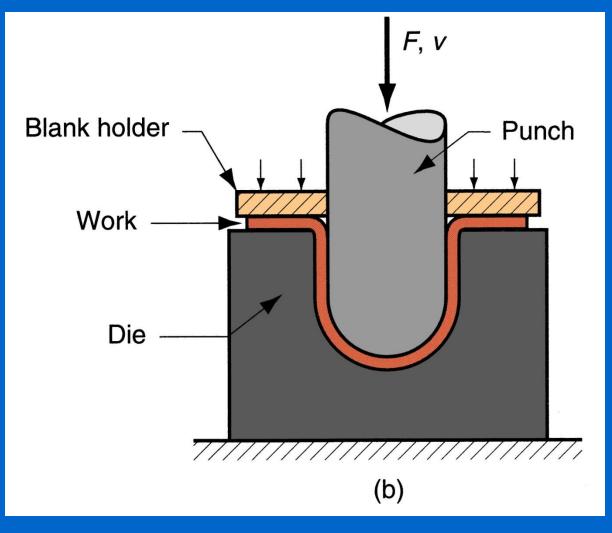
Sheet Metalworking

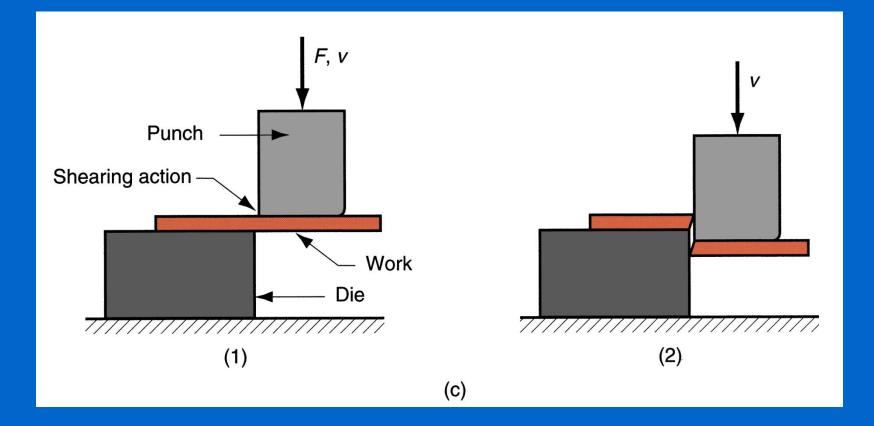

Forming on metal sheets, strips, and coils. The process is normally a cold working process using a set of *punch* and *die*.

- Bending straining of a metal sheet to form an angle bend.
- Drawing forming a sheet into a hollow or concave shape.
- Shearing not a forming process but a cutting process.


Sheet Metal working

- Forming and related operations performed on metal sheets, strips, and coils
- High surface area-to-volume ratio of starting metal, which distinguishes these from bulk deformation
- Often called *pressworking* because presses perform these operations
 - Parts are called *stampings*
 - Usual tooling: punch and die


Sheet Metalworking


(C)

Basic sheet metal working operations: (a) bending

Basic sheet metal working operations: (b) drawing

Basic sheet metal working operations: (c) shearing

Material Behavior in Metal Forming

- Plastic region of stress-strain curve is of primary interest because material is plastically deformed
- In plastic region, metal's behaviour is expressed by the flow curve:

$$\sigma = K \varepsilon^n$$

where *K* = strength coefficient; and *n* = strain hardening exponent

 Stress and strain in flow curve are true stress and true strain

Flow Stress

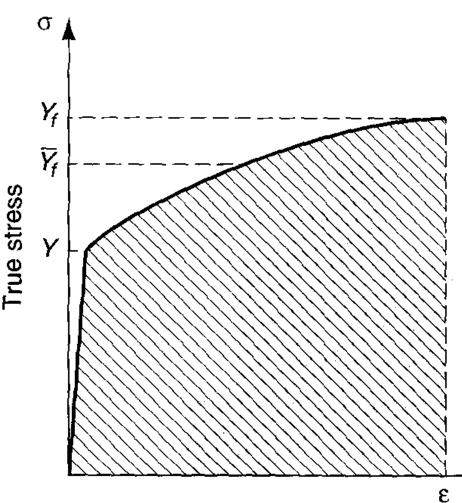
- For most metals at room temperature, strength increases when deformed due to strain hardening
- *Flow stress* = instantaneous value of stress required to continue deforming the material

 $Y_f = K \varepsilon^n$

where Y_f = flow stress, that is, the yield strength as a function of strain

Average Flow Stress

Determined by integrating the flow curve equation between zero and the final strain value defining the range of interest


$$\bar{Y_f} = \frac{K\varepsilon^n}{1+n}$$

where Y_f = average flow stress; and ε = maximum strain during deformation process

Material Behavior in Metal Forming

$$Y_f = K\varepsilon^n$$

$$\overline{Y}_f = \frac{K\varepsilon^n}{1+n}$$

- $Y_{\rm f}$ Flow Stress
- ε Maximum strainfor forming process
- K Strength coefficient
- \overline{Y}_{f} Average flow stress

Shear rate

- Cold working
 - Pros
 - better accuracy
 - better surface finish
 - strain hardening increases strength and hardness
 - grain flow during deformation provides directional properties
 - no heating is needed
 - Cons
 - higher forces and power are required
 - surface should be cleansed
 - ductility and strain-hardening limits the extent of forming

- Warm working temperature between room temperature and recrystallization temperature, roughly about 0.3 T_m
 - Pros against cold working
 - Lower forces and power
 - more intricate work geometries possible
 - need for annealing may be reduced/eliminated.

• Hot working - Deformation at temperature above recrystallization temperature typically between $0.5T_m$ to $0.75T_m$

– Pros

- larger deformation possible
- lower forces and power
- forming of room temperature low ductility material is possible
- isotropic properties resulted from process
- no work hardening

- Isothermal Forming preheating the tools to the same temperature as the work metal. This eliminates the surface cooling and the resulting thermal gradient in the workpart.
- Normally applies to highly alloyed steels, titanium alloys and high-temperature nickel alloys.

- For any metal, K and n in the flow curve depend on temperature
 - Both strength and strain hardening are reduced at higher temperatures
 - In addition, ductility is increased at higher temperatures

- Any deformation operation can be accomplished with lower forces and power at elevated temperature
- Three temperature ranges in metal forming:
 - Cold working
 - Warm working
 - Hot working

Cold Working

- Performed at room temperature or slightly above
- Many cold forming processes are important mass production operations
- Minimum or no machining usually required
 - These operations are *near net shape* or *net shape* processes

Advantages of Cold Forming v/s. Hot Working

- Better accuracy, closer tolerances
- Better surface finish
- Strain hardening increases strength and hardness
- Grain flow during deformation can cause desirable directional properties in product
- No heating of work required

Disadvantages of Cold Forming

- Higher forces and power required
- Surfaces of starting workpiece must be free of scale and dirt
- Ductility and strain hardening limit the amount of forming that can be done
 - In some operations, metal must be annealed to allow further deformation
 - In other cases, metal is simply not ductile enough to be cold worked

Warm Working

- Performed at temperatures above room temperature but below recrystallization temperature
- Dividing line between cold working and warm working often expressed in terms of melting point:

- $0.3T_m$, where T_m = melting point (absolute temperature) for metal

Advantages of Warm Working

- Lower forces and power than in cold working
- More intricate work geometries possible
- Need for annealing may be reduced or eliminated

Hot Working

- Deformation at temperatures above recrystallization temperature
- Recrystallization temperature = about one-half of melting point on absolute scale
 In practice, hot working usually performed somewhat above 0.5T_m
 - Metal continues to soften as temperature increases above $0.5T_m$, enhancing advantage of hot working above this level

Why Hot Working?

Capability for substantial plastic deformation of the metal - far more than possible with cold working or warm working

- Why?
 - Strength coefficient is substantially less than at room temperature
 - Strain hardening exponent is zero (theoretically)
 - Ductility is significantly increased

Advantages of Hot Working vs. Cold Working

- Workpart shape can be significantly altered
- Lower forces and power required
- Metals that usually fracture in cold working can be hot formed
- Strength properties of product are generally isotropic
- No strengthening of part occurs from work hardening
 - Advantageous in cases when part is to be subsequently processed by cold forming

Disadvantages of Hot Working

- Lower dimensional accuracy
- Higher total energy required (due to the thermal energy to heat the workpiece)
- Work surface oxidation (scale), poorer surface finish
- Shorter tool life

Strain Rate Sensitivity

- Theoretically, a metal in hot working behaves like a perfectly plastic material, with strain hardening exponent n = 0
 - The metal should continue to flow at the same flow stress, once that stress is reached
 - However, an additional phenomenon occurs during deformation, especially at elevated temperatures: Strain rate sensitivity

What is Strain Rate?

- Strain rate in forming is directly related to speed of deformation v
- Deformation speed v = velocity of the ram or other movement of the equipment

Strain rate is defined:

$$\dot{\varepsilon} = \frac{v}{h}$$

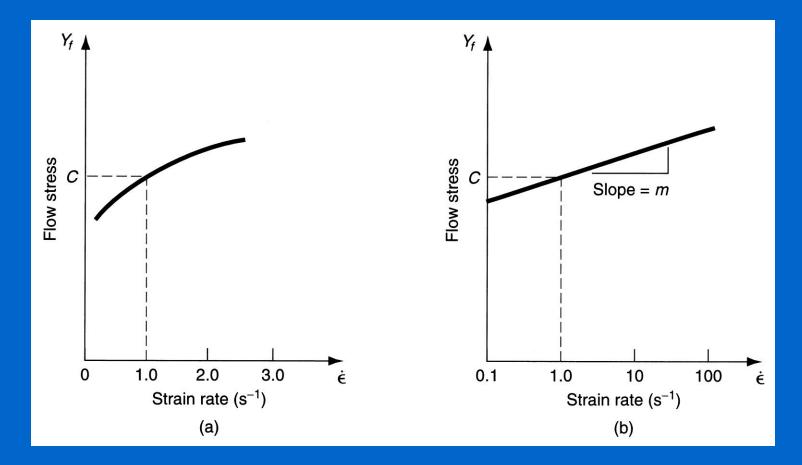
where \mathcal{E} = true strain rate; and *h* = instantaneous height of workpiece being deformed

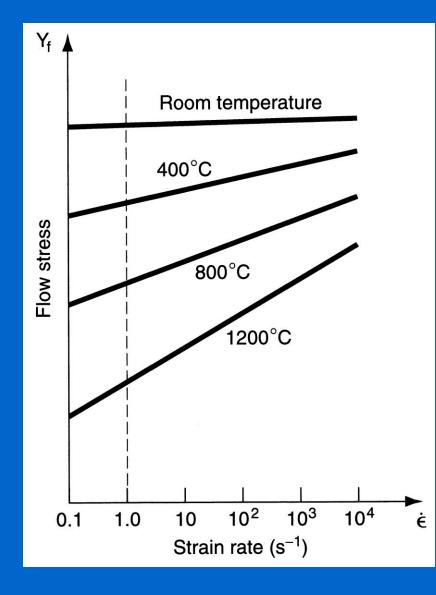
Evaluation of Strain Rate

- In most practical operations, valuation of strain rate is complicated by
 - Workpart geometry
 - Variations in strain rate in different regions of the part
- Strain rate can reach 1000 s⁻¹ or more for some metal forming operations

Effect of Strain Rate on Flow Stress

- Flow stress is a function of temperature
- At hot working temperatures, flow stress also depends on strain rate
 - As strain rate increases, resistance to deformation increases
 - This effect is known as strain-rate sensitivity




Figure (a) Effect of strain rate on flow stress at an elevated work temperature.

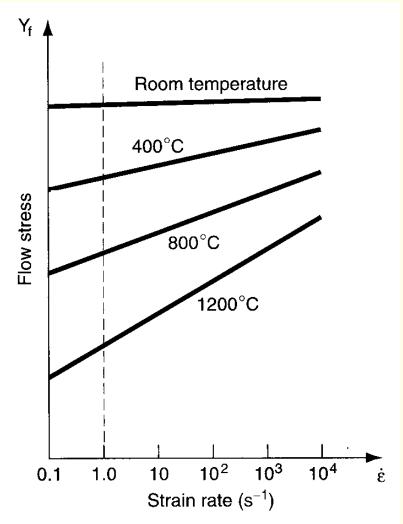
(b) Same relationship plotted on log-log coordinates

Strain Rate Sensitivity Equation

 $Y_f = C\dot{\varepsilon}^m$

where *C* = strength constant (similar but not equal to strength coefficient in flow curve equation), and *m* = strain-rate sensitivity exponent

Effect of temperature on flow stress for a typical metal. The constant C indicated by the intersection of each plot with the vertical dashed line at strain rate = 1.0, decreases, and *m* (slope of each plot) increases with increasing temperature


Effect of Strain Rate

$$\overline{Y}_f = C\dot{\varepsilon}^m$$

 $\dot{\mathcal{E}}$ strain rate

The strain rate is strongly affected by the temperature.

 $Y_f = A\varepsilon^n \dot{\varepsilon}^m$ A = a strength coefficient

Observations about Strain Rate Sensitivity

- Increasing temperature decreases *C*, increases *m*
 - At room temperature, effect of strain rate is almost negligible
 - Flow curve is a good representation of material behavior
 - As temperature increases, strain rate becomes increasingly important in determining flow stress

Friction in Metal Forming

- In most metal forming processes, friction is undesirable:
 - Metal flow is retarded
 - Forces and power are increased
 - Wears tooling faster
- Friction and tool wear are more severe in hot working

Lubrication in Metal Forming

- Metalworking lubricants are applied to tool-work interface in many forming operations to reduce harmful effects of friction
- Benefits:
 - Reduced sticking, forces, power, tool wear
 - Better surface finish
 - Removes heat from the tooling

Friction and Lubrication

- Friction is undesirable:
 - retard metal flow causing residual stress
 - increase forces and power
 - rapid wear of tooling
- Lubrication is used to reduce friction at the workpiece-tool interface

Category	Temperature range	Strain-rate sensitivity exponent	Coefficient of friction
Cold working	$\leq 0.3T_m$	$0 \le m \le 0.05$	0.1
Warm working	$0.3T_m - 0.5T_m$	$0.05 \le m \le 0.1$	0.2
Hot working	$0.5T_m - 0.75T_m$	$0.05 \leq m \leq 0.4$	0.4-0.5

Considerations in Choosing a Lubricant

- Type of forming process (rolling, forging, sheet metal drawing, etc.)
- Hot working or cold working
- Work material
- Chemical reactivity with tool and work metals
- Ease of application
- Cost